Student Number:	

AUGUST 2007

YEAR 12 HSC ASSESSMENT TASK#4 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using blue or black pen.
- Board-approved calculators may be used
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 84

- Attempt Questions 1-7.
- All questions are of equal value.

Mathematics Extension 1 HSC Trial

Total marks = 84
Attempt Questions 1-7
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

QUESTION 1 (12 marks) Use a SEPARATE writing booklet.

(a) Solve
$$\frac{4}{x-1} \ge 1$$
 for x .

- (b) Write down the inverse function of $y = e^{2x+1}$. Express your answer as a function of x. 2
- (c) Use the table of standard integrals to evaluate $\int_{0}^{\frac{\pi}{12}} \sec 3x \tan 3x \, dx$.
- (d) Given $f(x) = \tan^{-1}(\sin x)$ find $f'(\pi)$.
- (e) The curves $y = \ln x$ and $y = 1 x^2$ intersect at the point P(1, 0).

Find the acute angle between the tangents $t \partial$ the curves at P. Give your answer to the nearest degree.

QUESTION 2 (12 marks) Use a SEPARATE writing booklet.

- (a) The point P divides the interval AB in the ratio $\{k: J \text{ where } A \text{ and } B \text{ are the points } (4,-1) \text{ and } (0,3) \text{ respectively.}$
 - (i) Write down the co-ordinates of P in terms of k.
 - (ii) If P lies on the line y = 2x, find k and hence find P.
- (b) The polynomial equation $2x^3 4x^2 + 5x 3 = 0$ has roots α , β and γ . Find the exact value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$.

(c) Evaluate
$$\int_0^{\log 3} \frac{e^x}{\sqrt{1+e^x}} dx$$
, using the substitution $u = e^x$.

(d) In the diagram below, AB is parallel to DC, $\angle BAD = 75^{\circ}$ and $\angle DEC = x^{\circ}$.

Find the value of x, giving reasons for your answer.

1

3

QUESTION 3 (12 marks) Use a SEPARATE writing booklet.

2

2

- (a) (i) Express $6\cos x + 8\sin x$ in the form $R\cos(x-\alpha)$, where R > 0 and α is an acute angle in radians.
 - (ii) Hence, or otherwise, solve the equation $6\cos x + 8\sin x = 5$ for $0 \le x \le 2\pi$.
- (b) Find $\frac{d}{dx} \left(\sin^{-1}(x-1) \right)$ in its simplest form, and hence deduce that $\int_{-\frac{1}{2}}^{1} \frac{dx}{\sqrt{x(2-x)}} = \frac{\pi}{6}$
 - (c) (i) Sketch the graph of $y = \cos x$, $-\pi \le x \le \pi$, and use this graph to show that $\cos x + x = 0$ has only one solution.
 - (ii) Use Newton's method with a first approximation of x = -1 to find a better approximation to the root of $\cos x + x = 0$.

QUESTION 4 (12 marks) Use a SEPARATE writing booklet.

(a) Using
$$t = \tan \frac{x}{2}$$
, prove that $\frac{1 + \cos x}{1 - \cos x} = \cot^2 \frac{x}{2}$

- (b) Use the identity $\sin 2x = 2\sin x \cos x$ to find $\int \sin^2 x \cos^2 x \, dx$.
- (c) The normal to the parabola $x^2 = 4ay$ at the point $P(2ap, ap^2)$ meets the y-axis at Q and is produced to R so that PQ = QR as shown.

(i) Show that the equation of the normal to the parabola $x^2 = 4ay$ at the point $P(2ap, ap^2)$ is $x + py = 2ap + ap^3$.

Page 5

- (ii) Find the co-ordinates of Q.
- (iii) Show that the co-ordinates of R are $(-2ap, 4a + ap^2)$.
- (iv) Find the cartesian equation of the locus of R.

Marks

2

1

2

2

QUESTION 5 (12 marks) Use a SEPARATE writing booklet.

Marks

2

1

- (a) A vessel used for water is a solid of revolution formed by the rotation of the parabola $9y = 8x^2$ about the y-axis. The depth of the vessel is 8 cm.
 - Show that when the height of the water is h cm from its base the volume is given by $V = \frac{9}{16} \pi h^2 \text{ cm}^3$.
 - (ii) Show that when the vessel is half full the height of the water is $4\sqrt{2}$ cm.
 - (iii) If water is poured into the vessel at a rate of 20 cm³/sec, find the rate at which the level of water is rising when the vessel is half full.
- (b) (i) Sketch the graph of $y = \tan x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
 - (ii) Hence, or otherwise, find values of x in the domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ such that the series $1+\sqrt{3}\tan x + 3\tan^2 x + 3\sqrt{3}\tan^3 x + \dots$ has a limiting sum.
- (c) Two circles touch at the point A. Lines through A meet the circles at X and Y and at M and N respectively, as shown. RS, the tangent at A is shown.

Copy the diagram into your writing booklets.

Prove that PQ and TU, the tangents at X and Y respectively, are parallel.

Marks

QUESTION 6 (12 marks) Use a SEPARATE writing booklet.

- (a) The rate of increase of a population P of sandflies at Sand Fly Point on the Milford Track is proportional to the difference between the population, P, and 2000. This rate can be expressed by the differential equation $\frac{dP}{dt} = k(P-2000)$, where k is a constant and t represents time in weeks.
 - (i) Show that $P = 2000 + Ae^{kt}$, where A is a constant, satisfies the differential equation.
 - (ii) Initially, the population is 2500 and two weeks later it had increased to 5000.
 2
 Find the values of A and k.
 - (iii) After how many weeks will the population of sandflies exceed 10 000?
- (b) A particle moves in a straight line so that its velocity after t seconds is v ms⁻¹ and its displacement from the origin is x metres.
 - (i) Given that $\ddot{x} = 10x 2x^3$ and that v = 0 when x = -1, find v^2 in terms of x.
 - (ii) Explain why the motion cannot exist between x = -1 and x = 1.
 - (iii) Describe briefly what would have happened if the motion had commenced at x = 0 with y = 0.
- (c) (i) Use Mathematical Induction to prove that for all positive integers n 3

$$4(1^3 + 2^3 + 3^3 + ... + n^3) = n^2(n+1)^2$$

(ii) Hence find the value of
$$\lim_{x\to\infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right)$$

QUESTION 7 (12 marks) Use a SEPARATE writing booklet.

- a) (i) Sketch a possible shape of the continuous function y = f(x) given that f(0) = 3, $\lim_{x \to 0} f(x) = 0$ and that it has only one zero, at x = -1.
 - (ii) Explain why y = f(x) has an inflexion point to the right of x = -1.
- (b) A particle is moving about the origin O according to the rule $x = 4\sin 3t$ where x metres is the displacement from O at time t seconds.
 - Show that the motion is simple harmonic.
 - i) Determine when the particle is at x = 2 metres for the first time.
 - (iii) Write down the maximum speed of the particle.
- (c) A billboard, BC, is 4 metres high and is positioned vertically and parallel to a highway at a height which maximises tanθ, where θ is the angle subtended at the eyes of the passengers on the top deck of passing double-decker buses. The billboard must be 3 metres from the passengers.

Let $\angle ABE = P$, $\angle DCE = R$ and ED = x.

Not to scale

Marks

1

2

1

- (i) Copy the diagram into your answer booklet and express θ in terms of P and R.
- (ii) Show that $\tan \theta = \frac{12}{9 4x + x^2}$.

Hence find the value of x which maximises $\tan \theta$.

End of Assessment

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
1 (a)	4 ×1 ×1 x ≠1		
	4(x-1) > (x-1)2		
	$(x-1)^2-4(x-1) \leq 0$		
	(x-1) (x-1-4) 60		
	(x-1)(x-5) <0 105		-
	$1 < x < 5$ inverte: $x > e^{2y+1}$		
(b)			
	$2y+1 = \ln x$ $2y = \ln x - 1$		
	$y = \frac{1}{2} (\ln x - 1)$		
(4)	* '-		
	$\int_0^{\frac{\pi}{2}} \sec 3x \tan 3x dx$ $= \left(\frac{1}{3} \sec 3x\right)_0^{\frac{\pi}{2}}$		
	= 1/3 sec = - 1/3 sec 0		
	= \frac{1}{3} (J2 = 1)		
(d)	$f(x) = \tan^{-1}(\sin x)$ $f'(x) = \frac{1}{1 + \sin^2 x} \times \cos x$		
	$f'(x) = \frac{1}{1 + \sin^2 x} \times \cos x$:	
	$f'(\Pi) = \frac{1 + \sin^2 \Pi}{\cos^2 \Pi}$		
	≈-		
(e)	$y = \ln x \Rightarrow y' = \frac{1}{x}$		
	m7 = 1		
	y= 1-x² = y'= -2x m7=-2		
	$+ \ln \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	= 12 1+ x-2		
	= 3 0 = 72°		,

Year 12 Ma	ear 12 Mathematics Extension 1 Assessment #4 (Trial Examinatio			٠,	
Question	Solutions	Marks	Marki	7	
2(a)(i)	$x_{p} = \frac{4 \times 1 + 0 \times k}{k+1} \qquad y_{p} = \frac{-1 \times 1 + 3 \times k}{k+1}$				
	$P\left(\frac{4}{k+1}, \frac{3k-1}{k+1}\right)$				
(ii)	Plies on y=2x				
	$\frac{3k-1}{k+1} = 2 \times \frac{4}{k+1}$				
	3k-1=8 k=3				
	-'. P= (1,2)				
(4)	$\frac{1}{\alpha\beta} + \frac{1}{\alpha\delta} + \frac{1}{\beta\delta} = \frac{\delta + \beta + \alpha}{\alpha\beta\delta}$				
1	= (-4) = (-3) = 4				
(c)	$\int_{0}^{\ln 3} \frac{e^{x}}{\sqrt{1+e^{x}}} dx \qquad \lim_{z \to \infty} \frac{dy}{dz} = e^{x}$				
	$\int_{0}^{h_{3}} \frac{e^{x}}{\sqrt{1+e^{x}}} dx \qquad u=e^{x} \frac{du}{dx} = e^{x}$ $= \int_{0}^{3} \frac{1}{(1+u)^{\frac{1}{2}}} du \qquad x=h_{3}^{2} u=3$ $= \int_{0}^{3} \frac{1}{(1+u)^{\frac{1}{2}}} du \qquad x=h_{3}^{2} u=3$				
	$= \left(\frac{(1+u)^{\frac{1}{2}}}{\frac{1}{2}}\right)^{\frac{3}{2}}$				
	= 2 (54 - 52)				
(d)	LEDC=75° corresp. angles ABILICA				
	= 4-2V2 LEDC=75° corresp. angles ABILICA LECD=75° ext. angle of cyclic quad equals int. apposite L				
	$x = 180^{\circ} - (2 \times 75^{\circ})$ Lsun of Δ				
01					

ar 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
3 (a) (i)	R cos (x-x)= Rcos x cos x + Rsin x sino	K	
	6 cosx + 8 sinx = Rcosx cosx + Rsinxsin	1 oc	
	.'. R cos x = 6		
	$R \sin x = 8$ $square + add \implies R = 10 (R>0)$		
	square + add $=$ \times		
	= 0.927		
	6003 x + 8 sin x = 10 cos (x - 0.927)		
(ii)	$6\cos x + 8\sin x = 5$		
	ie 10 cos (x-0.927)=5		
	cos (x - 0.927) = 2		
	$x - 0.927 = \frac{37}{5}, \frac{57}{5}$ $x = \frac{7}{5} + 0.927, \frac{57}{5} + 0.927$		
	• • • • • • • • • • • • • • • • • • •		
(()	x=1.974, 6.163		
(6)	$\frac{d}{dx} \left(\sin^{-1} (x-1) \right) = \frac{1}{\sqrt{1-(1-x)^2}} \times 1$		
	$= \sqrt{1 - (1 - 2x + x^2)}$		
	$= \frac{1}{\sqrt{2x-x^2}}$		
	$= \frac{1}{\sqrt{x(2-x)}}$		
7	$-\int_{1}^{1} \frac{dx}{\sqrt{x(2-x)}} = \left(\sin^{-1}(x-1)\right)^{\frac{1}{2}}$		
	= sin-1(0)-sin-1(1)		
	1		
	= 0 - (-F) = T		
	===		

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 200				
Question	Solutions	Marks	Marking Criteria	
3(0)(i)	THE			
	cos $x+x=0$ is solve simult. $y=\cos x$ and $y=-x$ only I point of Intersection			
C 2: X	.'. cos x + x = 0 has only one solution			
(ii)	$f(x) = \cos x + x$ $f(-1) = -0.45$ $f'(x) = -\sin x + 1$ $f'(-1) = 1.84$			
	$x_2 = x_1 - \frac{f'(x_1)}{f'(x_1)}$			
,	= -0.75			
	.'. better approximation is -0-75			
	,			
		-		
			·	

Question	Solutions	Marks	Marking Criteria
4 (a)	$f = \tan \frac{x}{2}$ cos $x = \frac{1-t^2}{1+t^2}$		
	$LHS = \frac{1 + \cos x}{1 - \cos x}$		
	$= \frac{1 + \frac{1 - t^2}{1 + t^2}}{1 - \frac{1 - t^2}{1 + t^2}}$		
	1++2+1-+2 1++2 1++2 1++2 1++2		
	= 2 2+2		
	$=\frac{1}{t^2}$		
	= cot 2		
(6)	$\sin 2x = 2 \sin x \cos x$		
	$\sin^2 x \cos^2 x = (\sin x \cos x)^2$		
> ,	$= \left(\frac{1}{2}\sin 2x\right)^{2}$ $= \frac{1}{4}\sin^{2}2x$		
	$\int \sin^2 x \cos^2 x dx = -\frac{1}{4} \int \sin^2 2x dx$		
	$\sin^2 2x = \frac{1}{2} \left(1 - \cos 4x \right)$		
	$\int \int dx dx = \frac{1}{8} \int (1 - \cos 4x) dx$		
	= { (x - 4 sin 4x)+C		
(c) (i)	$x^{2} = tay \Rightarrow y = x^{2}$ $y' = \frac{x}{2a}$ $M_{T} = P$ $M_{N} = \frac{x^{2}}{P}$		
	eq. normal $y = ap^2 = \frac{1}{6}(x - 2ap)$		
	$py - ap^{3} = -x + 2ap$ $e^{-x+py} = 2ap + ap^{3}$		- Marine

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
4 (e) (ii)	at Q (on the normal) x = 0		
	PY = 20p + ap3		
	y = 2a + ap2		
	Q (0, 2a+ap2)		
(iii)	Q is midpt. of RP		
	$\frac{1}{2} \cdot O = \frac{x_R + 2\alpha \rho}{2} \Rightarrow x_R = -2\alpha \rho$		
	$2a + ap^2 = \frac{Y_R + ap^2}{2} \Rightarrow Y_R \cdot 4a + ap^2$		
	.". R (-2ap, 4a+ap2)		
(iv)	$x = -2ap \Rightarrow p = -\frac{x}{2a}$		
	y = 4a +ap²		
	$y = 4a + a\left(-\frac{x}{2a}\right)^2$		
	$y = 4a + \frac{x^2}{4a}$		
	tay = 16 a 2 + x 2		
	x2 = 4ay - 16a2		
	x2 = 4a (y - 4a)		
İ			
27			

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
5 (a) (i)	$V = TT \int_0^h x^2 dy$ volume about y -axis		
	=TT Jo gy dy		
	= Tr (9427h		
	= 9 TTh 2 cm ³		
Cii >	vessel is full when h=8		
	V= 9 Tx82 = 36T		
	- '- \frac{1}{2}V = 18 TT		
	18T = 9 Th2		
	$h^2 = 32$ $h = \sqrt{32} = 4\sqrt{2}$ cm		
Ciii)			
	dV = dV × dh find at when h=45		
	dV = 20 cm ³ /s		
	dv = 9 mh		
	20 = 9 TX 452 × dh		
	$\frac{dh}{dt} = \frac{40}{9\pi\sqrt{2}} = \frac{20\sqrt{2}}{9\pi} \text{ cm/s}$		
(b) (i)	1 14 11		
Ş	-II		
	↓ ↓ ↓ ↓		

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Year 12 Ma	thematics Extension 1 Assessment #4 (Trial Exa	mination) August 2007
Question	Solutions	Marks	Marking Criteria
5 (b) (ii)	I+ J3 tan x + 3 tan 2x + For a limiting sum -1 < r < 1 -1 < J5 tan x < 1 -1 < x < 6 P M R T X A A A A A A A A A A A A		When circles touch the line of centres passes through the point of contact. AX and AY are diameters LPXA = 90° and LUYA = 90° tangent to a circle is perpendicular to the radius drawn to the point of contact. LPXA = LUYA abternate angles are equal PQ TU

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

	Question	Solutions	Marks	Marking Criteria
	6 (a) (i)	P= 2000 + Aekt => Aekt= P-2000		
		dr = hAekt		
		= k(P-2000)		
	(ii)) t=0 P=2500		
		2500 = 2000 + Ae°		
		A = 500		
		t=2 P=5000		
		5000 = 2000 + 500 e 2k		
		$e^{2k} = 6$		
		2k = lnb $k = \frac{1}{2}ln6 = 0.895$		
	(iii)			
	- /	10000 = 2000 + 500 e in 6 t		
		ezh6t = 16		
		½h6 t= ln 16		
		$t = \frac{2 \ln 16}{\ln 6}$		
		= 3.09 weeks in the 3rd weeks		
	(b) (i)	$\ddot{x} = 10x - \lambda x^3$		
		$-\frac{1}{4x}\left(\frac{1}{2}v^{2}\right)=10x-2x^{3}$		
		$\frac{1}{2}V^2 = 5x^2 - \frac{x^4}{2} + c$,
		V=0 x=-1 → 0=5-1/2+C		
		c= -4½		
		$\frac{1}{2}V^2 = 5\chi^2 - \frac{\chi^4}{2} - \frac{9}{2}$		
		$y^2 = 10x^2 - x^4 - 9$		
	(ii)	For -1 < x < 1 v2 < 0		
		which is possible i. notion doesn't exist between x=-1		
,		. motion doesn't exist between 2 -		

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
6 (b) (ii)			
	10x2-x4-9<0		
	12 x4-10x2+9>0		
	(x2-9)(x2-1)>0 x <-3, -1 < x < 1, x>3		
CEN			
(iii)) እ		
	if x=0 and v=0		
	then x = 0		
	stationary particle and no acceleration		
	- particle would not move		
(c) (i)	Show true for n=1 LMS=4 RMS=12(2)2=4		
	LHS= 4 RMS: true for n=1		
	Assume true for n=k		
	ie 4 (13+23++13)=k2(k+1)2		
	Show true for n=h+1		
	ie 4(13+23++h3+(h+1)3) =(k+1)2(h+2)2		
	LH(5=4(13+23++h23) +4 (h+1)3		
	= h2(k+1)2+4(k+1)3		
	$= (k+1)^{2} (k^{2} + 4k+4)$		
	$=(k+1)^{2}(k+2)^{2}$		
	- RHS if true for n=h true for n=h true for n=h !!!=>		
	V = 1 = 150 110C 10		
	this true for n=LTI		
a. :. (all positive integrals.		
(ii)	$\frac{1^{2}+2^{3}++n^{3}}{n^{4}} = \frac{4}{n^{2}} \frac{(n+1)^{2}}{n^{2}} = \frac{4(n+1)^{2}}{n^{2}}$		
	$\lim_{n\to\infty} \frac{\phi(n+1)^2}{n^2} = \lim_{n\to\infty} \frac{\phi(n^2 + 2n + 1)}{n^2}$		
	- han 4(1+ n+n2)		
	$= \frac{4}{4} \text{ since } \lim_{n \to \infty} \frac{1}{n} = 0$		
	, lim 1+2++1 = 4		

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

Question	Solutions	Marks	Marking Criteria
7 (a) (i)	3 1 1		
Cii)	concave down around $x=-1$ passes through $(0,3)$ but to return to x -axis $(f(x) \rightarrow 0)$ above must change from concave down to concave up is pt. of inflexion to the right of $x=-1$		
(b) (i)	$x = 4 \sin 3t$ $\dot{x} = 12 \cos 3t$ $\dot{x} = -36 \sin 3t$ $= -9 (4 \sin 3t)$ = -9 x which is of the form $\dot{x} = -n^2x$.'. motion is simple harmonic		
(ii)	$2 = 4 \sin 3t$ $\sin 3t = \frac{1}{2}$ $3t = \frac{\pi}{18}$ $t = \frac{\pi}{18}$		
(iii)	max. speed 12 m/s		
(c) (i)	A P B 4-x D 3 C O = P + R		

Year 12 Mathematics Extension 1 Assessment #4 (Trial Examination) August 2007

uestion	Solutions	Marks	Marking Criteria
7 (c) (ii)	tan 0 = tan (P+R)		
	= tan P+ tan R		
	1 - tanp tank		
	$=\frac{4-x}{3}+\frac{x}{3}$		
	1-4-2 + 3		
	¥ 3		
	$= \frac{\frac{4}{3}}{9 - (4x - x^2)}$		
	9-44-42		
	[-100170		
	differentiale tan 0 wrt x		
	$\frac{d(fand)}{dx} = -12(9-4x+x^2)^{-2} \times (-4+2x)$		
	= 48-24x (9-4x+22)2		
	6.4		
	max when d(tand) =0		
	ie 48-24x=0 x=2		
	test $x \mid 2^{-} \mid 2 \mid 2^{+} \mid$ $\frac{d(tag0)}{dx} \mid + \mid 0 \mid - \mid$		
	•		
	/ max		
	tan O is a maximum		
	when $x=2$		