Mathematics

Extension 1

General Instructions

* Reading time — 5 minutes.

¢ Working time — 2 hours.

e Write using blue or black pen.

» Board-approved calculators may be
used. '

e A table of standard integrals is
provided.

¢ Al necessary working should be shown

in every question.
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Total imarks — 84

s Attempt Questions 1-7.
+ Al questions are of equal value.

Mathematics Extension 1 HSC Trial B

e Total marks -84

Attempt Questions 1-7
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing boeklets are available.

Marks

QUESTION 1 (12 marks) Use a SEPARATE writing booklet.
4
(a) Solve ——21 for x. 3
x~1
(b) Write down the inverse function of y= ¢**'. Express your answer as a function of x. 2
(c)  Use the table of standard integrals to evaluate J 2 gec 3xtan 3x dx . 2
V]

(d) Given f(x)=tan” (sinx) find f’(ﬂ:) . 2
() The curves y=Inx and y=1-x7 infersect at the point P(1,0). 3

Find the acute angle between the/tangents td the curves at P . Give your answer to
the nearest degree.
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Marks
QUESTION 2 (12 marks) Use a SEPARATE writing booklet.
(a) The point P divides the irfterv_@ AB inthe ratio % :] where A and B are the
points (4,—1) and (0, 3) respectively.
(i)  Write down the co-ordinates of P in terms of k. 1
(iiy If P lies on the line y=2x,find % and hence find P. 3
(b) The polynomial equation 2x> —4x* +5x—3=0 hasroots e, B and 7. 2
) 1 1 1
Find the exact value of —+—+—.
af ay Py
(c) Evaluate Iloga ¢ dx , using the substitution u = ¢* 3
o yl+et ’
(d) In the diagram below, 4B is parallel to DC, £B4AD =75° and LDEC =x°. 3

Not to scale

Find the value of x, giving reasons for your answer.
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QUESTION 3 (12 marks) Use a SEPARATE writing booklet.

() (i) Express 6cosx+8sinx in the form Rcos(x—a), where R>0 and o is

an acute angle in radians.

(i) Hence, or otherwise, solve the equation 6cosx+8sinx =5 for 0 < x<27x.

- d -
(b) Find i(sin”1 (x— 1)) in its simplest form, and hence deduce that

P& 7
L x(2—x) 6

(¢) ()  Sketch the graph of y =cosx, —7 <x <7, and use this graph to show that
cosx + x =0 has only one solution.

(ii) Use Newton’s method with a first approximation of x =—1 to find a better
approximation to the root of cosx + x=0.

Kambala 2007 Page 4

Marks




Mathematics Extension 1 HSC Trial Mathematics Extension 1 HSC Trial

Marks e e e e Marks

QUESTION 4 (12 marks) Use a SEPARATE writing booklet. QUESTION 5 (12 marks) Use a SEPARATE writing booklet.

(a) A vessel used for water is a solid of revolution formed by the rotation of the

. x 1+cosx 5 X
(a) Using t= tang , prove that “ooor = cot” 5 2 parabola 9y =8x® about the y-axis. The depth of the vessel is 8cm.
(i)  Show that when the height of the water is zcm from its base the volume is 2
(b)  Use the identity sin2x = 2sinxcosx to find J sin® x cos® x dx . 3 given by V' = % 7h* em®,
(i1).Show that when the vessel is half full the height of the water is 42 em. 1
(¢) The normal to the parabola x* = 4ay at the point P(Zap, apz) meets the y-axis at
Q and is produced to R so that PO = QR as shown. (iii) If water is poured into the vessel at a rate of 20cm®/ sec, find the rate at which 2

the level of water is rising when the vessel is half full.

R \\‘ .
n b4
i = —_—<x<L =

0 Not to scale (b) (i) Sketch the graphof y=tanx for S x= % 1

P (2ap, apz) (i) Hence, or otherwise, find values of x in the domain —g <x SZZE such that ‘ 2

the series 1++/3 tanx-+3tan® x+3+3 tan’ x+... hasa limiting sum.

x
o/
(¢) Two circles touch at the point 4. Lines through 4 meét the circles at X and ¥ 4
and at M and N respectively, as shown. RS, the tangent at 4 is shown.
(i)  Show that the equation of the normal to the parabola x* = 4ay at the point 2
P(Zap,apz) is x+ py=2ap-+ap’. : - - Néfto scale
(i) Find the co-ordinates of Q. - 1
(iii) Show that the co-ordinates of R are (—2ap, 4a+ap®). 2
(iv) Find the cartesian equation of the locus of R . 2 e e e

Q

Copy the diagram into your writing booklets.

Prove that PQ and TU, the tangents at X' and ¥ respectively, are parallel.
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_ Marks Marks
QUESTION 6 (12 marks) Use a SEPARATE writing booklet. QUESTION 7 (12 marks) Use a SEPARATE writing booklet.
(a) The ra’_ce of incre.ase of a population P of sandflies at Sand Fly Point on the Milford (a) (i) Sketch a possible shape of the continuous function y = f(x) given that 1
Track is proportional to the difference between the population, P, and 2000. This rate f(0)=3, lim f(x)=0 and that it has only one zero, at x =~1.
can be expressed by the differential equation ar = k(P - 2000) , where k is a constant
. o dr (ii) Explain why y= f(x) has an inflexion point to the right of x=-1. 1
and ¢ represents time in weeks. ’
(i) ~ Show that P=2000+ 4e®, where A is a constant, satisfies the differential 1 (b) A particle is moving about the origin O according to the rule x = 4sin3¢ where
equation. x metres is the displacement from O at time ¢ seconds.
. L. L. (i)  Show that the motion is simple harmonic. 2
(ii) Initially, the population is 2500 and two weeks later it had increased to 5000. 2
Find the values of 4 and £. , (i) Determine when the particle is at x =2 metres for the first time. 2
(iii) 'Write down the maximum speed of the particle. 1
(iii) After how many weeks will the population of sandflies exceed 10 000? 1 .

(¢) A billboard, BC, is 4 metres high and is positioned vertically and parallel to a highway
at a height which maximises tan6, where 0 is the angle subtended at the eyes of the
passengers on the top deck of passing double-decker buses. The billboard must be 3 metres

from the passengers.

(b) A particle moves in a straight line so that its velocity after ¢ seconds is v ms™ and its
displacement from the origin is x metres.

. - T _ 3 _ _ - 2 .
(i)  Given that ¥=10x~2x" and that v=0 when x=-1, find ¥* in terms of x. 2 ) Let ZABE=P, ZDCE=R and ED=x.
. A B
(i) Explain why the motion cannot exist between x =—1 and x=1. 1
Not to scale
(iii) Describe briefly what would have happened if the motion had commenced 1 . E kB :
at x=0 with v=0. > 4
X
_ R ' .
(¢) (i) Use Mathematical Induction to prove that for all positive integers n 3 D 3 ¢ -
3 3 3 3y 2 2 '
AT +2° 43 ++m)=n"(n+1) (i) Copy the diagram into your answer bookiet and express 6 in termsof P and R. 1
303, 28 s (i) Show that tnf=——2— 4
(ii) Hence find the value of lim (I_f_2—+3;l__+n_J 1 9—dx+x"
X—yoo n

Hence find the value of x which maximises tan8.

End of Assessment
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